Year 7

Welcome to

Secondary Maths

Activity Booklet

twinkl visit twinkl.com

Maths Word Search

This word search contains twenty－five words related to Maths．

How many can you find？

1．add	15．mean
2．angles	16．median
3．area	17．mode
4．circle	18．prism
5．cone	19．probability
6．coordinates	20．proportion
7．cube	21．pyramid
8．data	22．range
9．decimal	23．square
10．divide	25．tally
11．equal	
12．equation	
13．fractions	

C	P	R	L	M	0	P	ᄃ	N	0	C	\＄	A	Q	Q
\dagger	\＄	F	Z	里	H	\varnothing	X	T	B	V	丰	N	F	A
A	里	L	X	4	L	H	［	Q	U	A	－	I	0	N
	4	H	中	\nless	K	H	Q	I	M	中	A	Q	N	F
	ξ	D	1	R	G	D	A	P－	H	ϕ	N	R	N	里
＊	N	y	ψ		N	R	x	N	G	E		R	A	ϕ
W	A	J		ϕ	T	R	U	G	H	A	中	K	丰	ψ
χ	X	G	中	M	S	I	R	P	\bar{F}	C	R	N	M	A
F	D	M	平	I	P	R	M	B	E	X	ϕ	T	G	4
N	0	I	T	R	0	P	0	R	－	F	$\$$	V	G	T
F	A	S	Q	U	A	R	［	E	B	U	¢	N	J	$川$
D		U	E	V	＋4	E	D	I	A	N	A	G	\＄	ϕ
I	A	U	A	E	R	A	P	Y	R	A	M	I	D	ϕ
L	中	V	C	L	ד	C	A	R	于	B	U	S	J	¢
J	E	y	C	Y	T	I	\downarrow	I	B	A	B	0	R	－

Colour by Number

Instructions
Calculate each answer
then use the key to
shade each section in
the correct colour.

Red	$0-100$
Yellow	$101-200$
Orange	$201-300$
Blue	301 or more

Famous Mathematicians

Your task is to find out about six famous mathematicians. You might want to think about:

- what their full name was and how long they were alive for;
- when they were alive;
- what they are famous for/what they discovered.

Mathematician	Fact 1	Fact 2	Fact 3
Archimedes	Archimedes was a Greek mathematician who lived for approximately 75 years. He was a philosopher and inventor who wrote important works on geometry, arithmetic and mechanics.	He discovered (and mathematically proved!) the formulas for the volume and surface area of a sphere.	He calculated π to the most precise value known. His upper limit for π was the fraction 22. 7

Lovelace	Her full name was Augusta Ada King-Noel, Countess of Lovelace. She was an English mathematician and writer who died when she was 37 years old.	She has been called the world's first computer programmer. She wrote the world's first machine algorithm for an early computing machine.	Lovelace's ideas about computing were so far ahead of their time that it took nearly a century for technology to catch up!
Pascal	His full name was Blaise Pascal and he lived until he was 39 years old. He was a French mathematician.	Pascal invented the world's first fullyfunctional mechanical calculator.	Pascal's triangle is named after him. The triangle is built by starting with ' 1 ' at the top, then continuing to place numbers below it in a triangular pattern. Each number is the sum of the two numbers directly above it. Lots of different patterns can be seen in the triangle, such as counting numbers, triangular numbers, the Fibonacci sequence as well as symmetry.
Pythagoras	His full name was Pythagoras of Samos and he lived for approximately 75 years.	He was an Ancient Greek mathematician and philosopher.	He is best known for the Pythagorean theory which states that in a right-angled triangle, the square on the hypotenuse is equal to the sum of the squares on the other two sides.

Key Terms

Instructions

Write a definition for each key term. You may use a dictionary.

acute angle	An angle measuring less than 90 degrees.
area	The space that a surface takes up, measured in square units.
average	A measure used to find the middle/central tendency of a data set.
circumference	The distance around a circle.
cube number	Cube numbers are formed by multiplying an integer by itself then multiplying the result by the original integer.
cube root	The number which produces a given number when cubed.
diameter	A straight line which passes through the centre of a circle to touch both sides of the circumference.
difference	The result of subtracting one number from another.
equation	A mathematical statement which shows that two expressions are equal. An equation contains an equal sign.
equal	Having the same amount of value.
expression	An expression combines numbers and/or variables as well as mathematical operations.
factor	A whole number that divides exactly into another number.

formula	A formula is a special type of equation that shows the relationship between different variables.
hexagon	A polygon with 6 sides.
integer	A number which is positive, negative or zero, but which isn't a fraction or decimal.
isosceles triangle	A triangle with two equal sides and two equal angles.
length	The distance from one point to another.
multiple	Multiples are what we get after multiplying the number by an integer.
obtuse angle	An angle which measures between 90 degrees and 180 degrees.
octagon	A polygon with 5 sides.
pentagon	A plane shape which has 3 or more straight sides.
polygon	A number that has exactly two factors: 1 and itself.
prime number	The chance of a particular outcome occurring.
probability	The result when two or more numbers are multiplied.
product	quadrilateral

radius	The distance from the centre of a circle to its circumference.
reflex angle	An angle measuring between 180 degrees and 360 degrees.
scalene triangle	A triangle in which all three sides and all three angles have a different measurement.
square number	Square numbers are formed by multiplying a digit by itself.
square root	The number which produces a given number when squared.
sum	The total or whole amount.
variable	A letter or symbol representing a varying quantity.
volume	The amount of space occupied by a 3D object, measured in cubic units.

The Value of Words

Instructions

Use the key to calculate the value of each word, in pounds. The first question has been completed for you.

A	B	C	D	E	F	G	H	4	J	K	ᄂ	M	N	0	P	Q	R	S	T	U	V	W	X	Y	Z
50p	£1.03	£0.62	£0.15	10p	72p	22p	£0.15	£0.08	£1.21	$£ 2.50$	£1.08	42p	£0.78	£0.05	£1.65	£3.00	45p	68p	£0.18	95p	£0.27	£1.11	£1.85	$£ 2.05$	$£ 2.88$

(1) NUMBER	$£ 0.78+95 p+42 p+£ 1.03+10 p+45 p=£ 3.73$
(2) ALGEBRA	$50 p+£ 1.08+22 p+10 p+£ 1.03+45 p+50 p=£ 3.88$
(3) PROBABILITY	$£ 1.65+45 p+£ 0.05+£ 1.03+50 p+£ 1.03+£ 0.08+£ 1.08+£ 0.08+£ 0.18+£ 2.05=£ 8.18$
(4) STATISTICS	$68 p+£ 0.18+50 p+£ 0.18+£ 0.08+68 p+£ 0.18+£ 0.08+£ 0.62+68 p=£ 3.86$
(5) GEOMETRY	22p + 10p + £ $0.05+42 \mathrm{p}+10 \mathrm{p}+£ 0.18+45 \mathrm{p}+£ 2.05=£ 3.57$
(6) RATIO	$45 p+50 p+£ 0.18+£ 0.08+£ 0.05=£ 1.26$
(7) MEASURE	$42 p+10 p+50 p+68 p+95 p+45 p+10 p=£ 3.20$
(8) OPERATION	£0.05 + £1.65 + 10p + 45p + 50p + £0.18-£0.08 + £0.05 + £0.78-£3.84
(9) ADDITION	$50 p+15 p+15 p+£ 0.08+£ 0.18+£ 0.08+£ 0.05+£ 0.78=£ 1.97$
(10) SUBTRACTION	68p $+95 p+£ 1.03+£ 0.18+45 p+50 p+£ 0.62+£ 0.18+£ 0.08+£ 0.05+£ 0.78=£ 5.50$
(11) MULTIPLICATION	$42 p+95 p+£ 1.08+£ 0.18+£ 0.08+£ 1.65+£ 1.08+£ 0.08+£ 0.62+50 p+£ 0.18+£ 0.08+£ 0.05+£ 0.78=£ 7.73$
(12) DIVISION	$15 p+£ 0.08+£ 0.27+£ 0.08+68 p+£ 0.08+£ 0.05+£ 0.78=£ 2.17$

13	S U M	$68 p+95 p+42 p=£ 2.05$
14	T O TAL	$£ 0.18+£ 0.05+£ 0.18+50 p+£ 1.08=£ 1.99$
15 PR O DUCT	$£ 1.65+45 p+£ 0.05+15 p+95 p+£ 0.62+£ 0.18=£ 4.05$	
16	C A LCULATOR	$£ 0.62+50 p+£ 1.08+£ 0.62+95 p+£ 1.08+50 p+£ 0.18+£ 0.05+45 p=£ 6.03$

Extension

- Does the longest word have the largest value?

No, multiplication is the longest word but it has a smaller value than probability.

- Does the shortest word have the smallest value?

No, sum is the shortest word but it has a larger value than ratio.

- Create a mathematical word which has a bigger value than any of the words in the list.

Answers may vary, e.g. quadrilateral $=£ 3.00+95 p+50 p+15 p+45 p+£ 0.08+£ 1.08+50 p+£ 0.18+10 p+45 p+50 p+£ 1.08=£ 9.02$

The Broken Calculator

Instructions

- Both calculators are broken and most of the buttons have fallen off.
- Using the buttons that are left over on each calculator, how could you make each of the numbers below? You don't have to use all the digits and you may use each number more than once.

a How could you make 6?	For example: $2 \times 3=6$
b How could you make 7?	For example: $2+3+2=7$
c How could you make 12?	For example: $2 \times 3 \times 2=12$

a	How could you make 4?	For example: 2×2
b	How could you make 5?	For example: $20 \div 2 \div 2$
c	How could you make 6?	For example: $120 \div 20$
d How could you make 10?	For example: $120 \div 12$	

Times Table and Division Challenge
Complete each question without a calculator.

4×5	20
9×8	72
7×2	14
12×11	132
10×9	90
13×3	39
2×12	24
4×6	24
7×8	56
2×11	22
9×7	63
11×9	99
8×4	32
12×9	108
5×6	30
7×4	28
3×8	24
9×6	54
8×1	8
0×7	0

$108 \div 9$	12
$72 \div 6$	12
$35 \div 5$	7
$40 \div 8$	5
$28 \div 4$	7
$66 \div 11$	6
$144 \div 12$	12
$36 \div 2$	18
$45 \div 5$	9
$99 \div 9$	11
$120 \div 10$	12
$84 \div 6$	14
$96 \div 8$	12
$48 \div 6$	8
$49 \div 7$	7
$21 \div 3$	7
$16 \div 2$	8
$12 \div 4$	3
$15 \div 5$	3
$60 \div 12$	5

2×13	26
3×12	36
11×7	77
6×12	72
8×5	40
5×12	60
15×2	30
3×20	60
2×18	36
3×4	12
4×4	16
0×5	0
2×6	12
3×9	27
7×12	84
13×11	143
10×9	90
15×10	150
13×4	52
2×14	28

$65 \div 5$	13
$2 \div 2$	1
$8 \div 4$	2
$25 \div 5$	5
$56 \div 8$	7
$77 \div 11$	7
$117 \div 9$	13
$132 \div 12$	11
$169 \div 13$	13
$156 \div 12$	13
$35 \div 7$	5
$42 \div 6$	7
$54 \div 9$	6
$63 \div 7$	9
$48 \div 4$	12
$30 \div 5$	6
$40 \div 10$	4
$88 \div 8$	11
$130 \div 10$	13
$121 \div 11$	11

Addition and Subtraction Challenge

Complete each question without a calculator.

$45+101$	146
$23+27$	50
$68+43$	111
$112+45$	157
$145+62$	207
$132+98$	230
$43+56$	99
$98+35$	133
114 + 232	346
$101+98$	199
$85+67$	152
$42+55$	97
$109+156$	265
$246+398$	644
$312+497$	809
$458+984$	1442
$1092+48$	1140
$456+86$	542
$549+290$	839
$236+641$	877
$1032+1067$	2099

67-34	33
98-55	43
104-89	15
256-87	169
567-314	253
312-49	263
687-563	124
981-607	374
604-239	365
345-268	77
938-412	526
656-437	219
298-131	167
385-215	170
1085-617	468
2567-678	1889
9875-567	9308
2050-498	1552
114-89	25
262-119	143
562-229	333

1088 + 478	1566
$2056+789$	2845
$295+498$	793
$312+714$	1026
$896+747$	1643
$409+6802$	7211
$608+7897$	8505
$2145+421$	2566
3987 + 318	4305
$803+746$	1549
$1043+157$	1200
$952+986$	1938
$475+9042$	9517
1037 + 2498	3535
$5682+492$	6174
$632+1084$	1716
$783+209$	992
$6013+549$	6562
619 + 8014	8633
378 + 504	882
$409+656$	1065

4506-216	4290
9997-658	9339
2054-417	1637
1081-804	277
670-487	183
248-119	129
902-675	227
9783-406	9377
8962-434	8528
786-387	399
962-908	54
4894-1394	3500
561-416	145
896-516	380
7845-2478	5367
2398-1304	1094
9987-4377	5610
9832-984	8848
736-698	38
295-117	178
8978-3659	5319

Numberpillars

Instructions

Your task is to find the number with the most 'links'.

Rules

- Start with any number less than 100.
- If the number is even, then halve it.
- If the number is odd, add 1 and then halve it.
- Carry on until you get to the number 1 .

For example: 5 links

- Start with any number less than 100 :
- If the number is even, then halve it:
- If the number is odd, add 1 and then halve it:
- The answer is odd, so you must add 1 and then halve it again:
- If the number is even, then halve it:

$$
\begin{aligned}
& 10 \\
& 10 \div 2=5 \\
& 5+1=6 \text { then } 6 \div 2=3 \\
& 3+1=4 \text { then } 4 \div 2=2 \\
& 2 \div 2=1
\end{aligned}
$$

So, the number 10 has 5 links: 10, 5, 3, 2, 1

Lagrange's Four-Square Theorem

Instructions

Lagrange's theorem states that every positive integer can be made by adding four square numbers.
For example, 7 is made by $2^{2}+1^{2}+1^{2}+1^{2}$ (or $4+1+1+1$).
Your task is to find eight different ways to make 214 using Lagrange's theorem.
(1) $14^{2}+4^{2}+1^{2}+1^{2}$
(2) $13^{2}+5^{2}+4^{2}+2^{2}$
(3) $12^{2}+6^{2}+5^{2}+3^{2}$
(4) $11^{2}+8^{2}+5^{2}+2^{2}$

5 $10^{2}+8^{2}+5^{2}+5^{2}$
(6) $10^{2}+8^{2}+7^{2}+1^{2}$
($10^{2}+7^{2}+7^{2}+4^{2}$
(8) $9^{2}+9^{2}+6^{2}+4^{2}$

Maths Riddles

- I am a cube number and a square number below 100
- 8, 4 and 16 are factors

What number am I? 64

- I am a square number.
- I am an even number.
- I am between 20 and 50 .

What number am I? 36

- I am a prime number.
- I am less than 20 and I have two digits.
- If you double me and subtract 9 , you get a square number.

What number am I? 17

- I am a square number.
- I am an odd number.
- I am between 20 and 50 .
- 7 is one of my factors.

What number am I? 49

- I am an even number.
- I am more than 80 but less than 90.
$\cdot 6,12$ and 7 are some of my factors.
What number am I? 84

